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Abstract
In the most popular approach to the numerical study of the Anderson metal–
insulator transition the transfer matrix (TM) method is combined with finite-size
scaling ideas. This approach requires large computer resources to overcome the
statistical fluctuations and to accumulate data for a sufficient range of different
values of disorder or energy. In this paper we present an alternative approach
in which the basic TM is extended to calculate the derivative with respect
to disorder. By so doing we are able to concentrate on a single value of
energy or disorder and, potentially, to calculate the critical behaviour much
more efficiently and independently of the assumed range of the critical regime.
We present some initial results which illustrate both the advantages and the
drawbacks of the method.

1. Introduction

The Anderson (1958) transition in three-dimensional electronic systems has been extensively
studied over recent years (Kramer and MacKinnon 1993). It is well known that increasing the
fluctuations of the random potential in three-dimensional systems causes a transition from
metal to insulator. This transition occurs due to a change in the nature of the electron
wavefunctions under the influence of the disorder. In the insulating phase the magnitude
of the potential fluctuations is sufficiently large to localize the wavefunctions to a region of
space. As the disorder is reduced below a critical value the electron states become delocalized
allowing conduction through the system. In models of disordered systems such as the Anderson
Hamiltonian this change can be measured numerically by observing the change in the decay
length of the transmission probability (the correlation length ξ ) using the transfer matrix
(TM) method (MacKinnon and Kramer 1981, MacKinnon 1994). Since the development
(Abrahams et al 1979) of a scaling theory for the zero-temperature dc conductance of disordered
electronic systems much numerical work has focused on calculating the critical exponent for
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the correlation length (MacKinnon and Kramer 1981, MacKinnon 1994, Slevin and Ohtsuki
1997, 1999).

The assumption of one-parameter scaling implies that the renormalized length �1 = ξ1/M
should follow the scaling equation:

d ln �1

d ln M
= χ1(ln �1) (1)

with solutions of the form �1 = f1(M/ξ∞). When plotted against disorder, W , for different
sizes, M , the curves, f1, all cross at a fixed point χ1 = 0 corresponding to the metal–insulator
transition. ξ∞ is the correlation length for the infinite system which diverges close to the
critical point, Wc, as ξ∞ ∼ |W − Wc|−ν . Near the critical point the scaling equation can be
linearized:

�1 = �1,c + a(W − Wc)M
1
ν . (2)

The standard method of calculating the critical exponent ν is to analyse the finite-size scaling in
terms of this equation. However, taking the logarithm of the derivative with respect to disorder
gives us

ln

(
d�1

dW

∣∣∣∣
Wc

)
= ln a +

1

ν
ln M. (3)

This expression provides a way of calculating the critical exponent from the derivative
of the correlation length of the finite system �1. In previous work (MacKinnon 1990)
it has been noted that the calculation of the derivative d�1/dW would provide useful
complimentary information about the scaling and a more direct approach to calculating the
critical exponent. However direct estimation of the derivative has up to now been plagued
by large numerical errors associated with numerical division when using a finite-difference
approximation [�1(W + �W ) − �1(W )]/�W .

Our new method is an adaptation of the standard TM approach to calculate the derivative, Ṫ,
of the TM, T, from which it is possible to calculate the expectation value of d�i/dW , and hence
find ν. This approach is applicable for three-dimensional cubic systems (M = L = 6, 8, 10,
12, 14) rather than for quasi-one-dimensional systems. In contrast to quasi-one-dimensional
systems, where the conductance is described by only one correlation length, the conductance
of cubic systems is given by a sum over contribution from a series of correlation lengths. Here
we present preliminary results for the scaling of each correlation length individually as well
as for the conductance as a whole.

2. Computational method

2.1. The traditional transfer matrix

The Anderson (1958) model for non-interacting electrons on a simple cubic lattice in zero
magnetic field is described by the Hamiltonian:

H =
∑

i

εi |i〉〈i | +
∑
i �= j

V |i〉〈 j |, (4)

where |i〉 is the atomic orbital at site i , and V = 1 for nearest neighbours and zero otherwise.
The disorder is introduced by allowing the on-site energies εi to behave stochastically. The
site energies εi are chosen according to the probability distribution

p(ε) = W−1θ( 1
2 W − |ε|), (5)
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where θ is the step function so that p(ε) is a box distribution. The Schrödinger equation
Hφ = Eφ for a system with cross section M × M and length L can be rewritten in recursive
form: (

ψi+1

ψi

)
=

(
E − Hi −1

1 0

) (
ψi

ψi−1

)
= Ti

(
ψi

ψi−1

)
, (6)

where the 2M2 × 2M2 matrix, T, is the so-called TM and the M2 × M2 matrix, Hi , is the
Hamiltonian of a single slice disconnected from the rest of the lattice. The application of Ti to a
slice gives the solution of the Schrödinger equation for the next slice. In this way the complete
wavefunction for a disordered sample of length L can be generated by repeated application of
the TM: (

ψL+1
ψL

)
=

L∏
i=1

Ti

(
ψ1
ψ0

)
. (7)

The standard TM method then consists of calculating the asymptotic (i.e. L → ∞) behaviour
of the eigenvalues of the Hermitian matrix Q:

Q = T†T (8)

by repeated orthogonalization of the columns of T (MacKinnon and Kramer 1983).
Alternatively, for a finite L, a system in Landauer (1970) geometry, i.e. embedded between
perfectly ordered leads, may be represented in the form

Q = U†

[ L∏
i=1

Ti

]†

ΛU∗UTΛ
[ L∏

i=1

Ti

]
U (9)

where the columns (rows) of U (UT Λ) are the right (left) eigenvectors which diagonalize T in
the absence of disorder and

Λ =
(

1 0
0 −1

)
. (10)

The correlation lengths ξi , from which the scaling properties are calculated, are related to the
eigenvectors |zi〉 of Q by

Q|zi 〉 = exp(zi )|zi〉 where zi = 2αi L = 2 L/ξi (11)

for i = 1, 2, . . . , 2M2. In the quasi-one-dimensional limit the αi are called Lyapunov
exponents.

The normalized eigenvectors for the system with zero disorder can be grouped together to
form a 2M2 × 2M2 matrix, U, in which first M2 columns are made from the 2M2 × M2 sub-
matrix (U+) of eigenvectors representing waves travelling in the positive z-direction, and the
last M2 columns from those travelling in the opposite direction, (U−). The set of left-handed
eigenvectors is given by UTΛ. The eigenvectors can be used to transform the real-space TM (6)
into the wave representation:

Tw = UTΛTL U, (12)

where TL is the real-space TM for a system of length L. The TM in the wave representation,
Tw, can be expressed in terms of the transmission and reflection matrices:

Tw =
(

t − r′(t′)−1r r′(t′)−1

−(t′)−1r (t′)−1

)
. (13)
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This suggests that r′ and t′ may be calculated from the matrix products:

t′−1 = ( 0 1 ) Tw

(
0
1

)
= UT

−ΛTLU− = UT
−Λ

L∏
n=1

TnU− (14a)

r′t′−1 = ( 1 0 ) Tw

(
0
1

)
= UT

+ ΛTLU− = UT
+ Λ

L∏
n=1

TnU−. (14b)

2.2. Stabilization of the iteration

In practice the repeated multiplications of the matrix U− by successive transfer matrices gives
rise to numerical instabilities that require attention. The matrix gradually becomes dominated
by the largest eigenvalues and the smaller ones are lost owing to the finite accuracy of the
numerical process. It is these eigenvalues that are needed when the inverse is taken to calculate
t′. To avoid losing them the algorithm must be modified. After about ten iterations, and well
before the small eigenvalues are lost, the relevant information is ‘stored’ by multiplying from
the right by a stabilizing matrix, Y:

10∏
n=1

TnU−Y = ZY. (15)

The matrix Y may be chosen to be the inverse of the top half of the Z (or the upper triangular
matrix which orthonormalizes the columns of Z):

ZY =
(

Y−1

G

)
Y =

(
1

GY

)
. (16)

This process of multiplying by the inverse matrix is repeated approximately every ten
iterations. The product of the Y is stored separately and is used at the end to solve for the
reflection/transmission coefficients. Applying this method to equations (14a) and (14b) results
in the following relations:

t′−1Y = A, (17a)

r′t′−1Y = B, (17b)

where the matrices A, B and Y are known. The numerically stable solutions are

t′ = YA−1, (18a)

r′ = BA−1. (18b)

2.3. Calculating the derivatives

Our new approach extends the TM method to calculate Ṫ = dT/dW from which the dξi/dW
can then be found. To preserve the multiplicative behaviour a larger matrix K is used:

KL =
(

TL 0
ṪL TL

)
=

L∏
i=1

(
Ti 0
Ṫi Ti

)
(19)

where Ṫi has the simple form

Ṫi =
(

Ḣi 0
0 0

)
(20)
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where Ḣi is the derivative of the Hamiltonian of slice i :

Ḣi = dH

dW
=




ε ′
1 0 . . . 0 0

0 ε ′
2 . . . 0 0

...
... . . .

...
...

0 0 . . . ε ′
M2−1 0

0 0 . . . 0 ε ′
M2


 (21)

and ε ′
i is a random number between −0.5 and 0.5 from (5). The larger size of the matrix

increases the computational time required but because of the additional information contained
in the derivative only one calculation per system size is needed to calculate ν, rather than many
calculations over a wide range of disorders as in the standard method. The computational
details of how to calculate the derivatives of g and ξi from Ṫi are described in section 2. In
section 3.1 preliminary results of the scaling of these quantities is presented.

This method cannot be applied to long systems (i.e. quasi-one-dimensional) because,
from Osledec’s theorem, we would obtain a limiting KL matrix of eigenvalues which cannot
be related back to the eigenvalues of T. A possible solution would be to stabilize T and Ṫ
simultaneously so that they would both lead to limiting matrices of eigenvalues. However, two
different sets of vectors are required to orthogonalize T and Ṫ and this creates problems at the
end of the calculation when it becomes necessary to remove the stored stabilization vectors.
The only way to overcome these difficulties is to consider small cubic systems which do not
need stabilizing. In this work cubic systems of size M = 6, 8, 10, 12 were used.

In the polar decomposition the TM can be parametrized as (Mello et al 1988)

T = UΓV, (22)

=
(

u4 0
0 u†

2

) (
(1 + λ)1/2 λ1/2

λ1/2 (1 + λ)1/2

) (
u1 0
0 u†

3

)
(23)

where ui are arbitrary M × M unitary matrices and λ is a real diagonal matrix with positive
elements {λi }. If time-reversal symmetry holds then u3 = uT

1 and u4 = uT
2 . In this

parametrization the transmission matrix t′ can be written as

t′ = u3(1 + λ)−1/2u2 (24)

and the conductance as

g = Tr(t′t′†) = Tr(u3(1 + λ)−1u†
3), (25)

=
M∑

i=1

1

1 + λi
. (26)

The Lyapunov exponents for the ensemble are derived by substitution of the polar
decomposition (23) in the matrix product Q (8), (9)

Q =
(

u1(1 + 2λ)u†
1 2u1

√
λ(1 + λ)u3

2u†
3

√
λ(1 + λ)u†

1 u†
3(1 + 2λ)u3

)
. (27)

Q is Hermitian positive so the eigenvalues are positive real numbers and the flux conservation
constraint, Q−1 = ΛQΛ, requires that the eigenvalues come in inverse pairs. Strictly speaking
the Lyapunov exponents αi (11) are defined only in the quasi-one-dimensional limit, but in this
work we will also use the term for arbitrary L. Applying Osledec’s theorem of random matrix
products (Pichard and Sarma 1981a, 1981b), the Lyapunov exponents are self-averaging for
large L. Hence, taking the limit of large L is statistically equivalent to an ensemble average
over many different realizations of the disorder. Computationally, for samples of width M
close to the transition, convergence of the first Lyapunov exponent to 1% accuracy is achieved
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for a length L ∼ 104 × M . The conductance can be expressed in terms of the Lyapunov
exponents (Pichard 1984):

g = 2
N∑

i=1

1

1 + cosh(2Lαi )
. (28)

In the quasi-one-dimensional limit (L 
 1) the conductance can be written as

g ∼
N∑

i=1

e−2αi L = e−2α1 L

(
1 +

N∑
i=2

e−2(αi −α1)

)
(29)

where the N ∼ Md−1 Lyapunov exponents are ordered and α1 is the smallest. As the length
of the system is increased the fractional contribution to the current from the higher Lyapunov
exponents rapidly decreases. The conductance is dominated by the first Lyapunov exponent and
the system is similar to the one-dimensional case where there is only one Lyapunov exponent
(one conductance channel) and all the states are localized. Since there are no other relevant
length scales present the localization length is equivalent to the correlation length of the finite
system, ξ1, and is defined as

1

ξ1
= − lim

L→∞
ln g(L)

2L
= lim

L→∞
α1. (30)

From the Hellman–Feynman theorem the expectation value of the derivative of the
eigenvalues, τi , of t′†t′ can be calculated:

dτi

dW
= u†

i

dt′†t′

dW
ui (31a)

= 2 Re

(
u

†
i t′†

dt′

dW
ui

)
, (31b)

where ui is the eigenvector corresponding to τi . To find the ui and τi it is necessary to perform
an initial calculation of the TM as outlined in section 2.1. Then ui is used in a calculation of
the derivative from equation (31b). The expectation value of the derivative is only calculated
for the smallest ten Lyapunov exponents to avoid the necessity of stabilizing the matrices.
If the expectation value of the whole matrix were to be calculated, the smallest expectation
values would rapidly become insignificant compared to the largest, and would be lost in the
rounding errors. In general the expectation value for a quasi-one-dimensional system cannot be
calculated because as L increases the result rapidly becomes independent of initial conditions,
i.e. independent of the initial vector φi .

Starting from equation (31b) we derive the form used in the computational calculations.
From (14a) we have

t′−1 = UT
−ΛTLU− (32)

where U− correspond to eigenvectors in the leads with negative kz . Taking derivatives and
using equation (19) we obtain

dt′−1

dW
= UT

−ΛṪLU−. (33)

Using the identity t′−1t′ = 1 we can write

dt′

dW
= −t′

dt′−1

dW
t′ (34)

and finally

dt′

dW
= −t′UT

−ΛṪLU−t′ (35)
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Figure 1. Conductance, g in units of e2/h, versus disorder, W , for M = 6 (——), 8 (· · · · · ·), 10
(– – –), 12 (— — —) and 14 (— · —).

where the transmission matrices come from the initial calculation and still contain the
evanescent modes. Only at this point can we remove the evanescent modes (indicated by
application of Q) and calculate the expectation value:

d

dW
(1 + λi )

−1 = −φi Q
Tt′UT

−Λ
(

0
1

) L∏
i

Ki

(
1
0

)
U−t′Qφi (36)

where Q is an M × M ′ matrix with all elements zero, except for Qnn = 1, 1 � n � N which
correspond to the N non-evanescent modes. The actual computation starts with the initial
vector on the right and by successive matrix products moves through to the left. The derivative
of �i can be calculated (Pichard 1984):

d�i

dW
= −4

dλi

dW
[cosh−1(2λi + 1))2 sinh(cosh−1(2λi + 1))]−1. (37)

These values were found to be in agreement with the derivative as calculated from the normal
method, ≈(�17.5 − �16.5). The critical exponent is calculated by fitting a straight line to
equation (3).

The derivative of the conductance g can be calculated from the derivative of the LEs (37).
The one-parameter scaling theory is formulated in terms of the conductance and the scaling
behaviour of this quantity is considered first in the next section before considering each LE
individually.

3. Cubic systems

3.1. Scaling of the conductance

To estimate the critical point we have plotted (figure 1) the conductance g against disorder
W for system sizes M = 6, 8, 10, 12, 14. The value of critical disorder, Wc, is not expected
to depend on the quantity being considered. Therefore, a size-independent critical point at
approximately W = 16.5 would be anticipated to be in agreement with the values calculated
from both energy statistics (Hofstetter and Schreiber 1993, Zharekeshev and Kramer 1994)
of cubes and from the analysis of the first LE in quasi-one-dimensional systems. However,
it is clear that the apparent critical disorder is above W = 16.5 within the error bars of the
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Figure 2. ln D versus ln M for W = 16.5 and M = 6, 8, 10, 12, 14. The gradient is equal to 1/ν.
D = 〈d log(g)/dW 〉 (——), 〈d log(g)/dW 〉/〈log(g)〉 (— — —), 〈dg/dW 〉/〈g〉 (– – –), 〈dg/dW 〉
(· · · · · ·).

Table 1. At disorder W = 16.5 the number of iterations, open modes and the first LE for cubic
samples, E = 0.

M Iterations Modes �1

6 100 000 21 0.671 ± 0.0015
8 50 000 45 0.694 ± 0.002

10 30 000 61 0.709 ± 0.003
12 20 000 95 0.718 ± 0.003
14 5 000 123 0.729 ± 0.007

calculation (see table 1). The results are also qualitatively the same for log(g). This movement
of the critical point from the expected value of W = 16.5 is probably due to the presence of
the leads connected to the ends of the cube. This is in agreement with other results (Slevin
et al 2000, Kawarabayashi et al 2000) which find that the conductance is size dependent at
W = 16.54 with periodic boundary conditions. However, with hard wall boundary conditions
the conductance is found to be virtually size independent at W = 16.54 (Slevin and Ohtsuki
1997). In energy statistics calculations the boundary conditions affect the critical distributions
but do not appear to shift the critical point (Braun et al 1998).

Applying equation (3) with g as the scaling parameter gives us

ln(D) = b +
1

ν
ln M (38)

with D = dg/dW |Wc . If log g is used as the scaling parameter then D = 1/g dg/dW |Wc .
Also considered were D = 〈dg/dW |Wc〉/〈g〉 and D = 〈d log(g)/dW |Wc〉/〈log(g)〉. The plot
of equation (38) is given in figure 2 and the critical exponent found by a ‘least-squares fit’
of the gradient is given in table 2. The error in the value of g is considerably smaller than
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Table 2. Critical exponents calculated from the conductance of cubes with sizes M = 6, 8, 10, 12.

W D ν χ2 Q

16.5
d log(g)

dW
1.85 ± 0.12 0.7 0.7

16.5

〈
d log(g)

dW

〉/
〈log(g)〉 1.34 ± 0.066 1.0 0.6

16.5
dg

dW
1.24 ± 0.095 0.3 0.9

16.5

〈
dg

dW

〉/
〈g〉 1.65 ± 0.17 0.2 0.9

17.5
d log(g)

dW
1.34 ± 0.073 1.4 0.5

17.5

〈
d log(g)

dW

〉/
〈log(g)〉 1.30 ± 0.068 1.2 0.5

17.5
dg

dW
1.23 ± 0.14 0.4 0.8

17.5

〈
dg

dW

〉/
〈g〉 1.28 ± 0.15 0.3 0.9

the error in the gradient and can be ignored when calculating the standard deviation of the fit.
From the error bars on the graph we can see that log(g) produces slightly more accurate results
because it decreases the influence of the infrequent but very large values of the derivative. The
M = 14 data are not used in the calculation of the critical exponents. The results from the same
calculation performed at Wc = 17.5 are also given in table 2. On average the critical exponents
appear to be slightly lower in value for Wc = 17.5. Clearly the observed shift of the critical
point is completely independent of our new method to calculate the critical exponent. However
this deviation from scaling theory may well be prejudicing the critical exponent obtained from
the new method. Nevertheless there is general agreement with previous calculations of the
critical exponent which give a value of ν ≈ 1.5.

There are thus two deviations from the expected results, both of which are probably due
to finite-size effects: the shift in the apparent critical disorder and the dependence of the
calculated exponent on the particular average of g used. However, another possible factor is
the properties of the leads for which the number of open channels represents an additional
degree of freedom. This requires further investigation.

3.2. Scaling of the Lyapunov exponents

For cubic systems attached to leads the contribution of the first ‘Lyapunov exponent’2 to the
value of the conductance in the critical region can be calculated. At W = 16.5 the first LE
makes up 85% of the conductance and approximately 74% of the derivative of the conductance.
Therefore the higher Lyapunov exponents do have physical meaning even though the dominant
contribution is from the first exponent. Scaling higher Lyapunov exponents is analogous to
scaling energy statistics at large energy scales (such as P(i, s) for large i ) (Taylor 1998), since
both correspond to short-length-scale events.

The first LE is plotted against disorder in figure 3. Within the error bars of the calculation
it can be concluded that the critical point is above W = 16.5 as was the case with the

2 The Lyapunov exponents αi are strictly defined only in the quasi-one-dimensional limit but in this work the definition
is extended to include arbitrary L (11).
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Figure 3. Dependence of 〈�1〉 (upper figure) and 〈�6〉 (lower figure) on disorder W for cubic
systems of size M. Data points at W = 16.5, 17.0, 17.5. M = 6 (——), 8 (· · · · · ·), 10 (– – –), 12
(— — —) and 14 (— · —).

conductance g. This shift of the critical point is even clearer in the more accurate data for the
sixth LE (figure 3). Qualitatively similar results occur for 〈�i 〉.

In figure 4 equation (3) is plotted with D = 〈d�−1
i /dW 〉 for W = 16.5, i.e. the first LE,

〈�−1〉, is being scaled.
From one-parameter scaling the gradient of this line is equal to the inverse of the critical

exponent.
The accuracy of the data increases when we consider higher LEs and the result for the sixth

LE is shown in figure 4. In theory this should be a straight line but the accuracy of the data is



The metal–insulator transition 8673

Figure 4. Scaling of the Lyapunov exponents. Slope is equal to 1/ν. D = 〈d�−1
i /dW 〉 at i = 1

(lower curve), i = 6 (upper curve).

Figure 5. Scaling of the first (· · · · · ·), second (——) and sixth (– – –) Lyapunov exponents. Slope
is equal to 1/ν. D = 〈d(1/�i )/dW 〉, W = 17.5.

high enough to observe a definite curvature indicating deviations from one-parameter scaling
theory. Although the curve can be fitted by a straight line the quality-of-fit measure χ2 is too
large (and Q � 0.1) which indicates the curvature cannot be ignored. At W = 17.5, which
is nearer the apparent critical point (figure 5), the results are qualitatively the same and the
curvature in the ln(D) versus ln(M) plot is again observed for the higher Lyapunov exponents.
This type of curvature indicates that scaling corrections exist for the gradient. A full analysis
in terms of this equation was not possible because the number of data points is too small to
obtain sufficient accuracy. In future studies with a full compliment of data from M = 4 to
14 it is possible that the functional form of the corrections could be found and subtracted to
obtain a crossing at W = 16.5. It is impossible to tell if the curvature also exists for the first
LE because it could be masked by the larger error bars of the data.

The results of the straight line fit to calculate the critical exponent are given in figure 6. As
mentioned, although the critical exponents calculated from the higher Lyapunov exponents are
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Figure 6. Critical exponents calculated from 1/�i (higher curve) and from �i (lower curve) for
i = 1–6. W = 16.5 (upper figure), W = 17.5 (lower figure).

more accurate the χ2 becomes too large. However the fits illustrate that the scaling behaviour
is approximately in agreement with previously calculated values of the critical exponent.

4. Discussion and conclusions

We have presented results for relatively small cubic systems and this leads to uncertainties in the
determination of the critical disorder Wc and other deviations from scaling. We expect that most
of these deviations will eventually be eliminated by treating larger system sizes or by taking
account of corrections to scaling (Slevin and Ohtsuki 1997, 1999, 2001, Ohtsuki et al 1999).
However these correction procedures require more accurate data than are currently available.

Some of the deviations from scaling we observed,such as the shift in the critical disorder or
the different critical behaviour obtained by performing different averages, may be associated
with the fact that a calculation of the conductance for cubic systems involves a sum over
contributions from various length scales. Empirically this seems to lead to greater deviations
than are found in long strip calculations with the same cross section. On the one hand this
may be seen as a disadvantage of our procedure. On the other hand the conductance of a cube
is the quantity actually measured in most experiments and is also the quantity considered in
most analytical approaches, unlike the leading Lyapunov exponent on a long strip.
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The main traditional methods apply finite size scaling ideas to the results of TM
calculations or to energy level statistics (ELS). Currently the TM method can only deal with
smaller systems, typically M < 15, whereas the ELS method uses M < 50. The accuracy
of the resulting critical exponents, however, is much better for the TM method. There is also
a distinct tendency for the ELS method to give exponents which are smaller than those from
TM. The fact that the TM exponents have tended to rise as the data improved tends to suggest
that the accuracy of the data and the calculated exponents are coupled in some way. However,
the correlation could just as easily be with the system sizes. One possible interpretation of
this observation is that the critical range of disorder (or energy) is very small and that current
methods apply fitting procedures to a range which is too wide. As our procedure uses data
from a single value of disorder we are able to test this by looking at the apparent dependence
of the critical exponent on our choice of Wc. The data in table 2 illustrate this.

Technically our procedure is closer to the TM and like it we expect the time required to
perform the calculation for a single system to scale as M7. This is partly offset by the fact that
the calculation need only be performed for a single value of disorder.

We have introduced a new approach to calculating the critical behaviour of the Anderson
transition in disordered systems, which has the potential to overcome some of the numerical
difficulties which have plagued such calculations in the past.
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